
Electromyogram-based Cursor Control System for 
Users with Motor Disabilities 

Craig Chin, Armando Barreto, and Miguel Alonso Jr. 

Florida International University 
10555 West Flagler Street 
Miami, FL 33174, U.S.A. 

cchin006@fiu.edu, barretoa@fiu.edu, malon05@fiu.edu 

An improved hands-free cursor control system suitable for use by individuals 
with spinal dysfunction or spinal cord injury is introduced.  The system uses 
electromyogram (EMG) signals from facial muscles to produce five distinct 
cursor actions, namely: left, right, up, down and left-click.  The new system is 
derived from a system previously created by our group.  Object selection tests 
are performed on both systems.  We use statistical analysis and Fitts’ law analy-
sis of these tests to support our assertion that the new system provides enhanced 
performance over its predecessor. 

1   Introduction 

Computer-based systems have become increasingly pervasive in every arena of hu-
man activity.  Many professions require access to computer-based applications in or-
der for an individual to fulfill job requirements.  With the advent of the Internet, the 
computer has become a portal to a new domain of social interaction, information ac-
cess, and entertainment.  Typically, able-bodied individuals interact with a computer 
using standard input devices, such as, a mouse, trackball, touchpad, or keyboard.  
However, there is a considerable segment of the population (e.g., 250,000 – 400,000 
individuals in the United States) who are often unable to use such input devices be-
cause they live with spinal cord injury or spinal dysfunction [8].  There exists a need 
to provide such individuals with a more usable means of computer access than these 
input devices. 

With today’s GUI-based PC software, most of the human-to-computer interaction 
is based on selection operations, which consists of two steps: 

• Pointing: Positioning the cursor at the desired location of the screen, over the ap-
propriate area or icon. 

• Clicking: Executing the Mouse Down/Up function that is interpreted by the com-
puter’s operating system as an indicator to complete the selection of the item asso-
ciated with the icon at the location of the screen cursor. 

The cursor control system that we have created facilitates these point-and-click op-
erations through the detection and processing of electromyogram (EMG) signals. 



Electromyography is the study of muscle function through monitoring of the elec-
trical signals generated by the muscle [4].  A surface electrode placed on the skin 
above a superficial muscle will receive electrical signals emanating from several mus-
cle fibers associated with different motor units.  The spatio-temporal summation of 
these electrical signals results in what is called an EMG signal.  Therefore, the EMG 
signal provides an effective means of monitoring muscle activity. 

EMG signals have been used previously for cursor control.  EMG-based systems 
have been used in [5], [9] and [2], [3], with [2], [3] focused specifically on the use of 
EMG signals from cranial muscles.  Monitoring the EMG signals of cranial muscles 
makes this approach suitable for individuals suffering from severe motor disabilities 
and who are also paralyzed from the neck down. 

EMG-based cursor control systems have been shown to perform slowly when 
compared to a mouse-operated system in object selection tests [2], [3].  However, 
EMG-based systems have the advantage of allowing for small cursor movements 
suited for high resolution computer displays.  This is a quality that is not possessed by 
other alternative cursor control approaches, such as some based on eye-gaze tracking 
(EGT) [1], [6], [7]. 

The EMG system developed previously by our group [2], [3] utilized three elec-
trodes that measured EMG signals from muscles in the head of the user.  The EMG 
signals were classified into cursor actions by performing real-time spectral analysis of 
these signals. A previous empirical study of the EMG signals from different muscles 
revealed that they possessed distinguishing frequency characteristics.  An example of 
this is displayed in Fig. 1 
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Fig. 1. Spectra observed during a right frontalis contraction (left plot) and a left temporalis con-
traction (right plot) 

After a thorough evaluation of the previous EMG system, it was found that it was 
occasionally inaccurate in discriminating between the muscle contractions that com-
mand up and down cursor movements (eyebrows up and eyebrows down, respec-
tively).  To remedy this problem an additional electrode was added to the forehead re-
gion, and a new classification algorithm was devised to work with this new input 
configuration. 



Section 2 of this paper details how the new system was implemented and the meth-
odology behind the new classification algorithm.  Section 3 also describes the ex-
periment used to obtain object-selection task times, as well as, the data analysis meth-
ods used to study these task times.  Section 4 provides the results of statistical 
analysis and Fitts’ Law analysis performed on the experimental results.  Section 5 
presents our conclusions. 

2   System Implementation and Signal Processing Methodology 

2.1   Placement of Electrodes for the New EMG-based Cursor Control System 

Fig. 2 displays the placement of the Ag/AgCl electrodes on the head of the subject.  
This figure indicates that electrodes were placed over the right frontalis muscle, the 
left temporalis muscle, the right temporalis muscle, and the procerus muscle, respec-
tively. An electrode was placed over the right mastoid as a reference.  This electrode 
set up differs from the previous EMG-based system only in the addition of the fourth 
electrode over the procerus muscle. 

 

 
Fig. 2. Electrode placement for the new EMG cursor control system 

2.2   Hardware Components of the EMG-Based Cursor Control System 

The hardware components of the cursor control system are presented in Fig. 3.  Each 
of the four EMG signals was magnified by a Grass® P5 Series AC preamplifier.  
Each of these preamplifiers possessed an anti-aliasing filter with a gain of 10,000 V/V 
and a 60Hz notch-filter.  The ADC64TM DSP/AD board (Innovative Integration, 
Simi Valley, CA) performed analog-to-digital conversion on each signal at a sampling 
rate of 1.2 kHz, and then applied the classification algorithm to these digitized signals 
in real-time.  The output of the board was a series of TTL-compliant binary voltage 
sequences consistent with voltage sequences expected from a serial mouse.  The Mo-
torola® MC1488C RS-232C driver converted the TTL sequences into RS-232C for-
mat and transmitted these sequences into the serial port of the personal computer 
(PC).  The serial mouse driver of this computer communicated with the operating sys-
tem to produce cursor actions driven by the serial signal created by the DSP board. 



 

Fig. 3. Block diagram of hardware components of EMG-based cursor control system 

2.3   EMG Processing Algorithm for Muscle Contraction Identification 

The desired relations between cursor actions, facial movements, and muscle contrac-
tions are given in Table 1. 

Table 1. Relations between cursor actions, facial movements and muscle contractions 

Cursor Action Facial Movement Muscle Contraction 
Left Left Jaw Clench Left Temporalis 

Right Right Jaw Clench Right Temporalis 
Up Eyebrows Up Right Frontalis 

Down Eyebrows Down Procerus 
Left-Click Left & Right Jaw Clench Left & Right Temporalis 

The purpose of the classification algorithm was to determine if a facial muscle con-
traction had occurred and if so, which specific muscle was the source of this contrac-
tion.  Given the one-to-one correspondence between muscle contraction and cursor 
action, the output of an effective muscle contraction classification algorithm can be 
utilized in a real-time implementation for hands-free cursor control. 

Both the classification algorithm of [2], [3] and the new classification algorithm 
made use of the periodogram estimation of the power spectral density (PSD) of the 
input EMG signals.  In both cases, the PSD indicated how the power of an EMG sig-
nal was distributed over a frequency range of 0 Hz – 600 Hz.  Periodogram PSD esti-
mations were taken every 256 consecutive samples (every 0.213s) from each of the 
EMG channels. 

The two classification algorithms differed in the way each utilized the PSD esti-
mates to classify the EMG data.  The algorithm of [2], [3] only utilized three elec-
trodes placed on: the left temporalis muscle, the right temporalis muscle, and the right 
frontalis muscle respectively.  This algorithm calculated partial accumulations over 
the frequency ranges of 0 Hz – 145 Hz and 145 Hz – 600 Hz of the PSDs produced 
from the three EMG channels in order to distinguish between the frequency character-
istics associated with the contraction of different muscles (temporalis versus fron-
talis).  This algorithm also utilized PSD amplitude thresholds to estimate the strength 
of contraction from each of the three muscles mentioned previously. 

Testing of this algorithm revealed that it did not always classify the eyebrows 
down movement efficiently.  So it was proposed that an additional electrode be placed 
over the procerus muscle, because it is one of the muscles directly involved in the 



eyebrows down facial movement.  This new four-electrode input configuration re-
quired a new classification algorithm, the details of which are described in the follow-
ing paragraphs. 

The new classification algorithm made use of Mean Power Frequency (MPF) val-
ues to distinguish spectral differences associated with each facial muscle contraction, 
instead of partial PSD accumulations. The MPF is derived from the PSD values as a 
weighted average frequency in which each frequency component, f, is weighted by its 
power, P.  The equation for the calculation for the MPF is given by: 
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The new classification algorithm used a combination of PSD amplitude thresholds, 
complete PSD sums, and MPF values to correctly classify muscle contractions.  For 
example, to correctly classify a unidirectional muscle contraction all the following 
criteria must be satisfied: 
1. The maximum PSD amplitude must exceed the threshold set for that electrode. 
2. The sum of the PSD amplitudes for the given electrode must exceed the PSD sums 

of the other electrodes 
3. The mean power frequency calculated from the PSD must fall into a range consis-

tent with the muscle associated with the electrode (frontalis: 40 Hz – 165 Hz, tem-
poralis: 120 Hz – 295 Hz, procerus: 60 Hz – 195 Hz). 

Detection of a click action requires fulfillment of similar requirements in both tem-
poralis muscles simultaneously. 

3   Testing and Data Analysis Methods 

The experiment used to determine the point-and-click capabilities of the two systems 
followed a 2 x 4 x 4 x 6 factorial design with two cursor control systems (old and 
new), 4 different “Start” icon positions (Upper Left, Lower Left, Upper Right, and 
Lower Right), 4 different “Stop” icon sizes (8.5 x 8.5 mm, 12.5 x 12.5 mm, 17 x 17 
mm, 22 x 22 mm), and 6 different able-bodied male subjects.  A program was created 
in Visual Basic to present the point-and-click interface to each subject and to record 
the movement times required for each task.  The program was displayed on a 17” 
color monitor.  For each point-and-click trial, an 8.5 x 8.5 mm “Start” icon was pre-
sented in a corner of the screen and a “Stop” icon was presented in the center.  Each 
subject was instructed to use the EMG-based cursor control system to click the “Start” 
button to begin timing a trial, move the cursor to the “Stop” button, and click on it as 
quickly as possible. This would record the total task time for the trial. The subject 
would then click a “Next” icon to display another trial layout with the “Start” button 
located in another corner of the screen.  Each specific trial configuration (“Start” loca-
tion, “Stop” size, and algorithm) was repeated three times by each subject resulting in 
a total of 96 trials executed by each subject. 

The statistical analysis involved applying a four-way analysis of variance 
(ANOVA) of this factorial experiment.  The results are given in the following section. 



Fitts’ law analysis applies Fitts’ law to object selection data such as those produced 
by our experiment.  Fitts’ law states that there is a linear relationship between the 
movement time taken for a point-and-click task (MT) and the difficulty of this task 
(ID).  The Fitts’ law equation is given by: 

bIDaMT +=  (2) 

where MT is the movement time in seconds, ID is the index of difficulty for the task, 
in bits.  Also, a (seconds) and b (seconds/bit) are the coefficients associated with the 
linear relationship.  ID is given by: 

( )1
2

log +=
W
AID  (3) 

where A represents the distance to the target, and W represents the width of the target, 
which in our case is the “Stop” button. 

Fitts’ law essentially states that the narrower and further away a target is, the more 
difficult the task will be and the more time it will take to be completed. 

For Fitts’ law analysis, a movement time value is obtained by averaging all the 
movement times taken for a task of a given ID.  Provided that there are tasks with dif-
ferent ID values then we will have a number of (ID, MT) ordered pairs.  These or-
dered pairs are used to produce a linear regression line that represents the perform-
ance capabilities of that cursor control system.  More specifically, the reciprocal of 
the slope of the regression line is used as performance measure.  The name of this 
measure is the index of performance (IP) and has units of bits/s.  The IP value for a 
point-and-click system indicates the rate of user information processing for that sys-
tem. 

4   Results 

The analysis of variance of the data performed in Minitab produced the following ta-
ble: 

Table 2. Four-way ANOVA table 

Source DF SS MS F P 
Algorithm (A) 1 10290.1 10290.1 84.66 0.000 
“Start” Position (P) 3 611.3 203.8 1.68 0.171 
A*P 3 221.2 73.7 0.61 0.611 
“Stop” Icon Size (I) 3 3073.4 1024.5 8.43 0.000 
A*I 3 306.5 102.2 0.84 0.472 
P*I 9 833.8 92.6 0.76 0.652 
A*P*I 9 603.8 67.1 0.55 0.836 
Subject (S) 5 27421.5 5484.3 45.12 0.000 
Error 539 65514.2 121.5   
Total 575 108875    



Table 2 shows a significant main effect for algorithm (A) with p < 0.0005, and a 
significant main effect for icon size (I), p < 0.0005.  Therefore we can reject the null 
hypothesis of Ho1: A1 = A2 = 0, as well as, the null hypothesis Ho2: I1 = I2 = I3 = I4 = 0. 

The mean point-and-click task times obtained from the real-time experiment were 
22.66 s for the old system and 14.21 s for the new system. 

The Fitts’ law analysis data are shown in tables 3 and 4. 

Table 3. Aggregated point-and-click data for Fitts' law analysis of old system 

D(mm) W(mm) ID(bits) MT(s) IP=ID/MT(bit/s) 
180 8.5 4.47 26.87 0.166 
180 12.5 3.94 24.24 0.163 
180 17 3.53 19.74 0.179 
180 22 3.20 19.80 0.162 

Table 4. Aggregated point-and-click data for Fitts' law analysis of new system 

D(mm) W(mm) ID(bits) MT(s) IP=ID/MT(bit/s) 
180 8.5 4.47 16.34 0.274 
180 12.5 3.94 15.13 0.261 
180 17 3.53 12.75 0.277 
180 22 3.20 12.63 0.253 

The linear regression equation derived from the results of Table 3 was MT = -
0.623 + 6.148*ID, r = 0.924, F(1, 2) = 24.3, p < 0.0015.  The linear regression equa-
tion derived from the results of Table 4 was MT = 2.03 + 3.22*ID, r = 0.931, F(1, 2) 
= 27.0, p < 0.0012.  The IP value for the old system was 0.16 bit/s, while the IP value 
for the new system was 0.31 bit/s. Fig. 4 shows the linear regression plots for both 
systems. 
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Fig. 4. Fitts' law regression lines for both cursor control systems 

 



5   Conclusion 

The results show that mean point-and-click task times are 8.45 s faster for the new 
system when compared to the old system.  The ANOVA results prove that this differ-
ence is statistically significant.  Therefore, we conclude that the new system provides 
faster point-and-click operations when compared to the old system. 

The Fitts’ law data shows that the IP value for the new algorithm is larger than that 
of the old one (0.31 bit/s compared to 0.16 bit/s).  Also the linear regression equations 
and the corresponding plot indicate that the new system performs 6 - 10 s faster than 
the old system for a task of a given index of difficulty.  One can conclude from these 
analyses that the new system exhibited a shorter mean object selection time, and al-
lowed a more efficient processing of user input information (larger IP) for enhanced 
hands-free interaction with the GUI of a personal computer. 
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